CORE MATHEMATICS (C) UNIT 1 TEST PAPER 10

- 1. Express $\frac{2\sqrt{3}}{5-3\sqrt{3}}$ in the form $a+b\sqrt{3}$, where a and b are rational numbers. [4]
- 2. Find an equation of the circle with centre (2, -3) which passes through the point (7, 9). [4]
- 3. Given that $y = (2x-5)^2 (x-4)^2$, find the integers c and d such that $y = c((x-d)^2 1)$. [5]
- 4. $f(x) = 3x + \frac{1}{6x} 4$.
 - (i) Find the values of x for which f'(x) = 0, giving the answers in surd form with rational denominators. [4]
 - (ii) Find the second derivative of f(x) with respect to x. [2]
- 5. (i) By completing the square, find the roots of the equation $x^2 4kx + (5 + k) = 0$, giving the values of x in terms of k. [4]
 - (ii) Find the set of values of k for which the roots are real and distinct. [4]
- 6. Solve the simultaneous equations

$$2x - 3y = 1,$$

$$4x^2 - 9y^2 = 1 - 4x + 9y.$$
 [8]

7. The straight line y = mx + n is parallel to 4x - 2y = 5 and passes through the point (1, 7).

The straight line y = px + q is perpendicular to 6x + 3y = 4 and passes through the point (-1, 5).

- (i) Find the values of m, n, p and q. [6]
- (ii) Find the coordinates of the point where the lines y = mx + n and y = px + q intersect. [3]
- 8. $f(x) \equiv x^3 11x^2 + 10x$.
 - (i) Factorise f(x) completely. [3]
 - (ii) Find the gradient of the curve y = f(x) at the origin. [3]
 - (iii) Find the coordinates of the points where the graph of y = f(x + 3) crosses the x-axis. [4]


CORE MATHEMATICS 1 (C) TEST PAPER 10 Page 2

9. The diagram shows the curve C with equation

$$y = x^3 - x^2 - x + 10.$$

C cuts the x-axis at A (a, 0), where a is an integer between

-5 and 0, and the y-axis at B(0, b).

(i) Find the values of a and b.

- [3]
- (ii) Find the coordinates of the turning points of C, identifying each as a maximum or a minimum.
- [6]

The tangent to the curve at A and the normal to the curve at B meet at P.

(iii) Find the coordinates of P.

[9]

PMT

CORE MATHS 1 (C) TEST PAPER 10: ANSWERS AND MARK SCHEME

1.
$$\frac{2\sqrt{3}}{5-3\sqrt{3}} = \frac{2\sqrt{3}(5+3\sqrt{3})}{(5-3\sqrt{3})(5+3\sqrt{3})} = \frac{18+10\sqrt{3}}{25-27} = -9-5\sqrt{3}$$
 M1 A1 A1 A1 A

2. Radius = 13
$$(x-2)^2 + (y+3)^2 = 169$$
 M1 A1 M1 A1 4

3.
$$y = (2x - 5 + x - 4)(2x - 5 - x + 4) = (3x - 9)(x - 1) = 3(x^2 - 4x + 3)$$
 M1 A1
= $3((x - 2)^2 - 1)$ $c = 3, d = 2$ M1 A1 A5

4. (i)
$$f'(x) = 3 - \frac{1}{6x^2} = 0$$
 when $x^2 = \frac{1}{18}$ $x = \pm \frac{\sqrt{2}}{6}$ M1 A1 M1 A1

(ii)
$$f'(x) = \frac{1}{3x^3}$$
 M1 A1

5. (i)
$$(x-2k)^2 - (4k^2 - k - 5) = 0$$
 $x = 2k \pm \sqrt{4k^2 - k - 5}$ M1 A1 M1 A1
(ii) $4k^2 - k - 5 > 0$ $(4k - 5)(k + 1) > 0$ $k < -1$, $k > 5/4$ M1 AI M1 A1

(ii)
$$4k^2 - k - 5 > 0$$
 $(4k - 5)(k + 1) > 0$ $k < -1, k > 5/4$ MI AI MI AI

6.
$$(2x-3y)(2x+3y) = 1-4x+9y$$
, so $2x+3y=1-4x+9y$ B1 M1 A1
 $6x-6y=1$ Also $6x-9y=3$, so $y=-2/3$ $x=-1/2$ M1 A1 M1 A1 A1

7. (i)
$$m = \text{gradient of } 4x - 2y = 5 \text{ so } m = 2$$
 Then $7 = 2 + n \text{ so } n = 5$ M1 A1 A1 $p = \text{grad. perp. to } 6x + 3y = 4 \text{ so } p = \frac{1}{2}$ Then $5 = -\frac{1}{2} + q \text{ so } q = \frac{11}{2}$ M1 A1 A1

(ii)
$$2x + 5 = \frac{1}{2}(x + 11)$$
 when $x = \frac{1}{3}$ Intersect at $(\frac{1}{3}, \frac{17}{3})$ M1 A1 A1

8. (i)
$$f(x) = x(x-1)(x-10)$$
 M1 A1 A1
(ii) $f'(x) = 3x^2 - 22x + 10 = 10$ when $x = 0$ M1 A1 A1

(iii)
$$f(x + 3) = 0$$
 when $(x + 3)(x + 2)(x - 7) = 0$ M1 A1
Points are $(-3, 0), (-2, 0), (7, 0)$ M1 A1

9. (i) By trial,
$$y = 0$$
 when $x = -2$ $a = -2$, $b = 10$ M1 A1 B1

(ii)
$$dy/dx = 3x^2 - 2x - 1 = (3x + 1)(x - 1) = 0$$
 when $x = -1/3$, $x = 1$ M1 A1 A1
Turning points are $(-1/3, 10^{5}/27)$ max, $(1, 9)$ min M1 A1 A1

(iii) At (-2, 0), gradient = 15 Tangent is
$$y = 15x + 30$$
 M1 A1 A1
At (0, 10), gradient = -1 Normal is $y = x + 10$ M1 A1 A1
At P , $14x = -20$ $x = -10/7$ P is $(-10/7, 60/7)$ M1 A1 A1

8